CO₂ as a Raw Material electrochemical processes to produce fuels and chemicals

Dr. Stella Balomenou

CERTH

IFI I AS

CCUS in Action" – A Deep Dive into the Future of Carbon Capture and Utilization

Online Webinar-22/05/2025

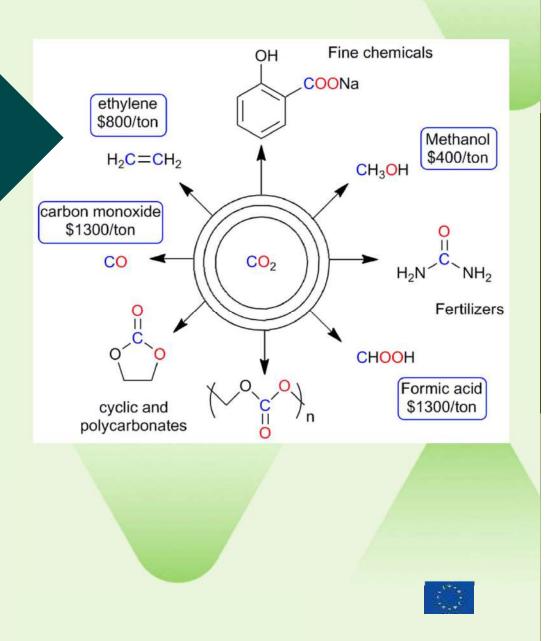
Funded by the European Union

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101172954. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union.

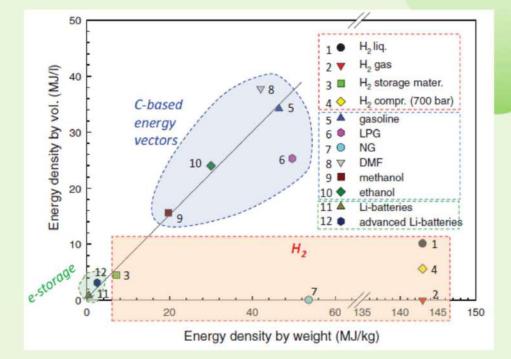
Outline

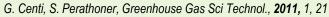
\circ Introduction

- The role of CO₂ in mitigating challenges related to renewable energy deployment
- Processes to convert CO₂ into chemicals/fuels
- Electrochemical reduction of CO₂ process
 - Essentials and technologies for electrochemical CO₂ conversion
- \circ Low temperature CO₂ reduction
- High temperature, Solid Oxide Electrolysis for CO₂ conversion
- Advantages, challenges and prospects of electrochemical CO₂ conversion



CO₂ reduction to value-added products


- 110 Mt of CO₂ are used annually in the production of chemicals
- The rest is needed for:
 - \circ enhanced oil recovery
 - preservative and beverage additive
 - \circ fire suppression
 - coolant or solvent
- Annual production: 24 Gt



Energy density of liquid and gaseous fuels

Requirements for suitable energy vectors:

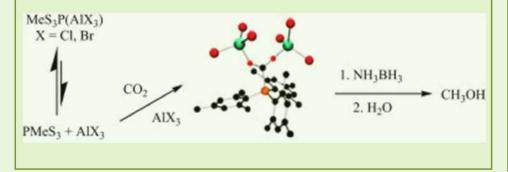
- i. have both a high energy density by volume and by weight
- ii. be easy to store without a need for high pressure at room temperature
- iii. be of low toxicity and safe to handle, and show limited risks in their distributed (non-technical) use
- iv. show a good integration in the actual energy infrastructure without the need of new dedicated equipment
- v. have a low impact on the environment in both their production and their use

Reuse

Energy density per weight vs per volume in a series of liquid and gaseous fuels, H₂, and electrical energy

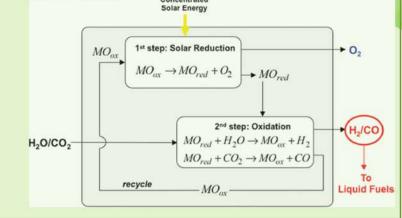
Liquid fuels are fulfilling all the requirements, except of greenhouse gases emissions

 It is preferable and more sustainable to find an efficient solution to recycle the CO₂ to form fuels using renewable energy rather than develop new energy vectors

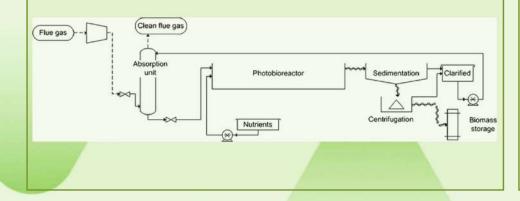


Processes to convert CO₂ into chemicals/fuels

Reuse


A. Stoichiometric reactions

They do not need any external thermodynamic energy inputs to proceed as they are not nonspontaneous reactions, and use only chemicals potentials to drive the reaction.


B. Thermo-chemical reactions

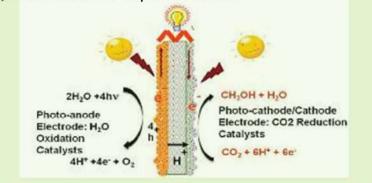
They utilize external energy in the form of heat to drive the reaction.

C. Biochemical processes

Use of microalgae for bio-fuels production.

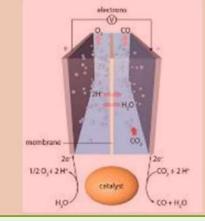
D. Photocatalytic reactions

The transformation of CO₂ into fuel by using solar light irradiation.

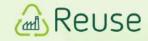


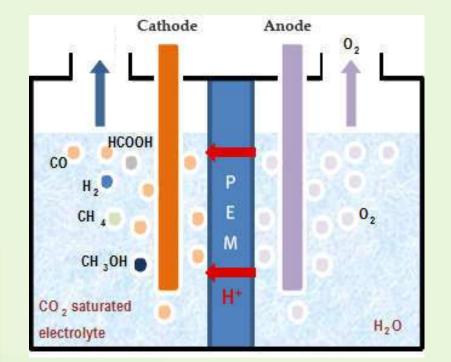
Processes to convert CO₂ into chemicals/fuels

Reuse


E. Photo-electrochemical (PEC) reactions

Use of semiconductors as anode/cathode electrodes. Yield highly reduced and selective CO_2 reduction products (methanol, ethanol, etc.), at lower overpotentials.


F. Electrochemical reductions


Use of electric energy (potential) to reduce CO_2 into chemical and/or fuels.

Essentials of electrochemical reduction of CO₂

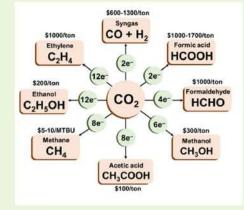
Electrochemical CO₂ conversion process:
Cathode reaction:
$$CO_2 + 2H^+ + 2e^- \rightleftharpoons CO + H_2O$$

Anode reaction: $H_2O \rightleftharpoons 1/2O_2 + 2H^+ + 2e^-$
Overall reaction: $CO_2 \rightleftharpoons CO + 1/2O_2$

The CO₂ reduction reaction usually competes with the hydrogen evolution reaction (HER):

$$2H^+ + 2e^- \rightleftharpoons H_2$$

Essentials of electrochemical reduction of CO₂



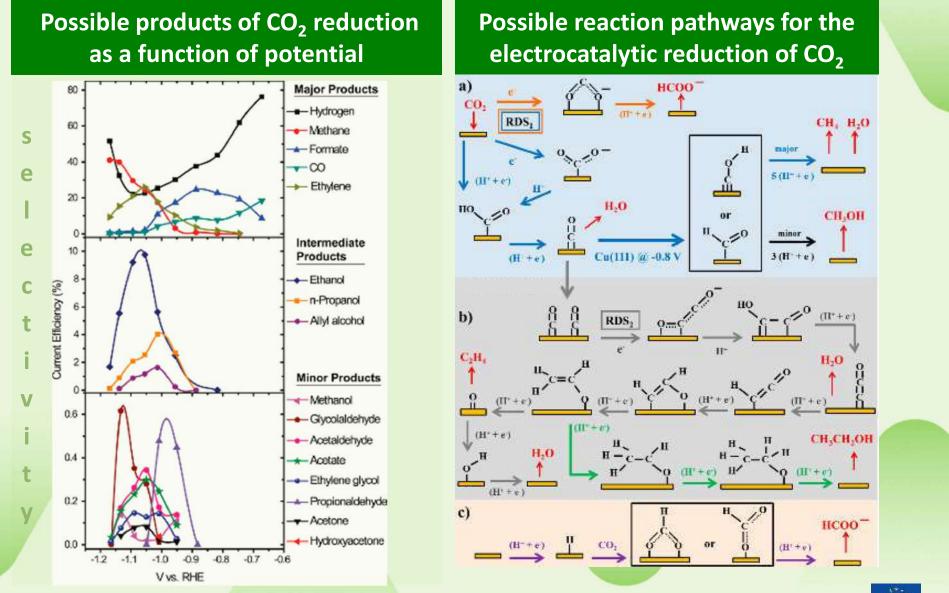
The half-cell reactions of cathode during electrochemical CO₂ reduction

Cathodic half-cell reaction (reduction process)	$\begin{array}{l} \Delta G^\circ_{rxn} = - nFE^\circ_{cell} \Rightarrow E^\circ_{cell} = - \Delta G^\circ / nF \\ (V \text{ vs. NHE at pH=0}) \end{array}$
$4H^++4e^-\rightarrow 2H_2\uparrow$	-1.23 Hydrogen
$CO_2 + 2H^+ + 2e^- \rightarrow CO^+ + H_2O$	-1.33 CO
$CO_2 + 2H^+ + 2e^- \rightarrow HCOOH$	-1.39 Formic acid
$CO_2 + 4H^+ + 4e^- \rightarrow HCHO + 1/2O_2$	-1.37 Formaldehyde
$CO_2 + 6H^+ + 6e^- \rightarrow CH_3OH + H_2O$	-1.21 Methanol
$2CO_2 + 12H^+ + 12e^- \rightarrow C_2H_5OH + 3H_2O$	-1.14 Ethanol
$3CO_2 + 18H^+ + 18e^- \rightarrow C_3H_7OH + 5H_2O$	-1.13 Propanol
$CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$	-1.06 Methane
$2CO_2 + 14H^+ + 14e^- \rightarrow C_2H_6 + 4H_2O$	-1.08 Ethane
$2CO_2 + 12H^+ + 12e^- \rightarrow C_2H_4 + 4H_2O$	-1.15 Ethylene

Potential products of CO₂ electroreduction:

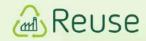
Carbon monoxide (CO) Formic acid (HCOOH) or formate (HCOO⁻) Methanol (CH₃OH) or ethanol (C₂H₅OH) Methane (CH₄) or Ethylene (C₂H₄) Formaldehyde (CH₂O) Oxalic acid (H₂C₂O₄) or oxalate (C₂O₄²⁻)

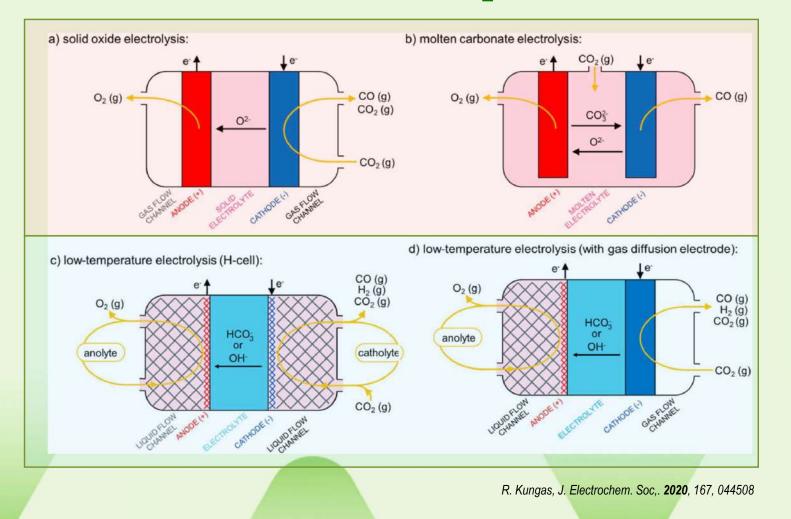
In thermodynamics, the Gibbs free energy of CO₂ reduction (ΔG_{rxn}=-n·F·E_{cell}) is always positive at medium and high pH range, hence, the theoretical potentials are negative.


Thus, CO₂ reduction requires electrical energy input

In kinetics, the electrochemical reduction of CO₂ normally require certain overpotentials (>1.0 V), i.e. application of higher potential than thermodynamic potential, to get reasonable amounts of reduced products.

In an aqueous electrolyte, the H_2O also undergoes reduction and releases H_2 as a major by-product. Thus, water reduction is always in competition with CO_2 reduction reaction in electrochemical cells.


Essentials of electrochemical reduction of CO₂



R. Kortlever et. al, J Phys Chem Lett., 2015, 6, 4073

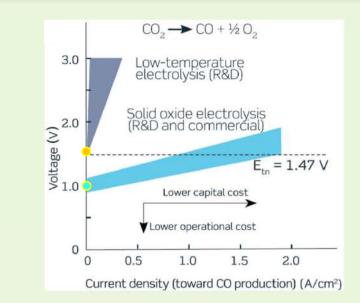
Technologies for CO₂ Electrolysis



Low vs. High temperature CO₂ electrolysis



Technologies for CO₂ Electrolysis



Low vs. High temperature CO₂ electrolysis

THERMODYNAMICS

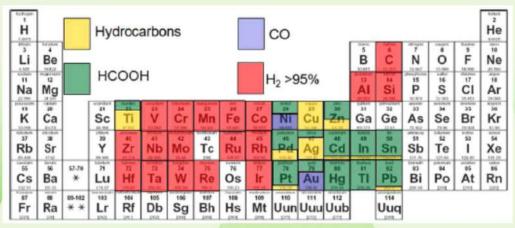
Energy demand for CO₂ electrolysis

KINETICS

Performance for CO₂ splitting: potential vs current density

- High temperature (SOEC) technology offers markedly higher thermodynamic performance: an increasing fraction of the total energy demand can be provided in the form of heat (T·ΔS_f, entropy term)
- At low temperatures, kinetics are slow and higher overpotentials (energy) are required to achieve high current densities (production rate)

Electrocatalysts for CO₂ reduction


Electrocatalysts are needed to bind and activate CO₂ in order to reduce the high overpotentials typically encountered

△ Also, catalysts can drive **selective formation** of desired products

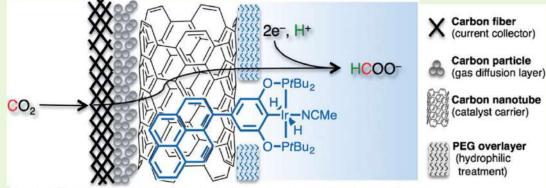
Four (4) distinct classes of metal catalysts have been identified, regarding the reduction product:

- i. formic acid, HCOOH, formation metals (Pb, Hg, In, Sn, Cd, Tl, Ir)
- ii. carbon monoxide, CO, formation metals (Au, Ag, Zn, Pd, Ga)
- iii. hydrocarbons, e.g. methane and ethylene, formation metals (Cu, Ti, Ag)
- iv. hydrogen, H₂, formation metals (Pt, Ni, Fe, Ti, Ir)

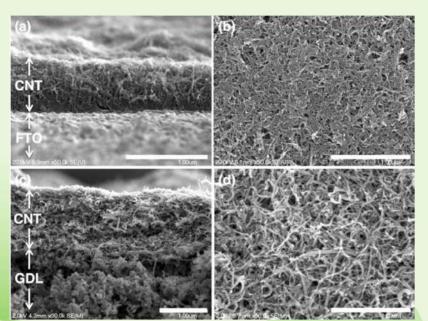
Grouping of metals based on CO₂ reduction products in potassium bicarbonate (KHCO₃) based media

Example: electrocatalysts for formic acid production

- Electrochemical reduction of CO₂ in aqueous solution to Formic acid (HCOOH) and Formate ion (HCOO⁻)was reported as early as 1870
- Formic acid can be produced with very high Faradaic efficiencies on metals with high overpotential for H₂ production (e.g. Hg, Pb, metal oxides, alloys and MOF catalysts)
- The electrochemical conversion of CO₂ to formic acid "HCOOH" (and formate "HCOO-") is a two-electron process:


 $CO_2 + e^- \rightarrow CO_2^{\bullet-} \xrightarrow{+H_2O} HCO_2^{\bullet} + OH^- \xrightarrow{+e^-} HCO_2^-$

The rate determining step is the formation of the CO_2^{-2} anion radical at the high overpotential region and is the second electron transfer leading to the formation of formate at low overpotential.



Example: electrocatalysts for formic acid production

1 atm $CO_2(g)$ Gas Diffusion Electrode0.1 M NaHCO_3 (aq.)Carbon nanotube-coated GDE with surface-boundIr pincer dihydride catalyst

Cyclic voltammograms in water, under Ar (dotted) and 1 atm CO_2 (solid) at 100 mVs⁻¹ scan rate

-0.6

200

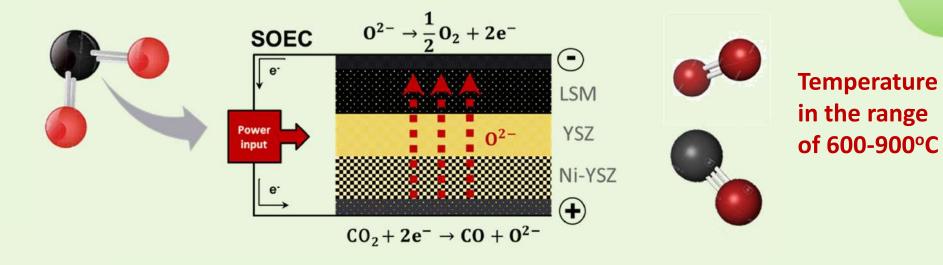
(Yri) /

-CO.

---- Ar

- The supported Ir catalyst exhibits notable efficiency (96%), selectivity (83%), and longevity for the production of formate
- Optimization with a gas diffusion electrode modified with the Ir catalyst gives current densities up to about 15 mA·cm⁻²

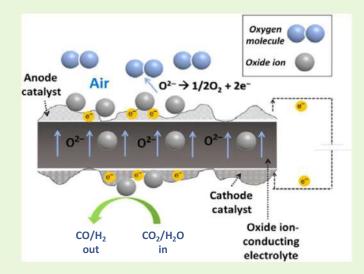
Kang P, Zhang S, Meyer TJ, Brookhart M. Angew. Chem. Int. Ed. 2014;53:1-6



-1.2

E (V vs NHE)

CO₂ electrolysis

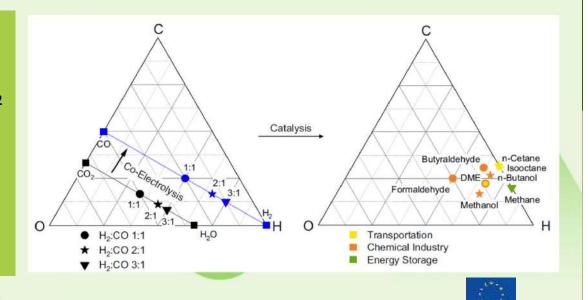

Advantages of solid oxides electrolysis:

- Feed of gaseous CO₂ directly from source
- Both reversible potential and electrode polarization resistances decrease substantially with increasing temperature
- Efficiencies exceeding 95% (using higher heating value) are realistic
- Possibility of co-electrolysis of H₂O and CO₂ yielding syngas

Reuse

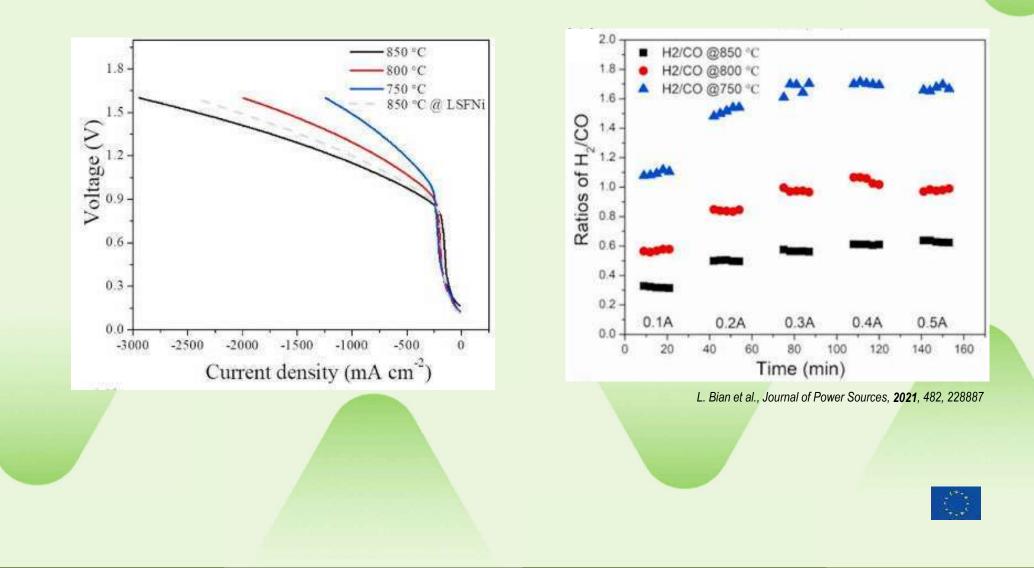
H₂O and CO₂ co-electrolysis

During high-temperature co-electrolysis three reactions are possible at the fuel electrode: (i) electrochemical conversions of steam to H₂ $H_2O + 2e^- \rightarrow H_2 + O^{2-}$


(ii) electrochemical conversion of CO_2 to CO_2

 $CO_2 + 2e^- \rightarrow CO + O^{2-}$

(iii) reverse water gas shift (RWGS) reaction: $H_2 + CO_2 \rightleftharpoons CO + H_2O$

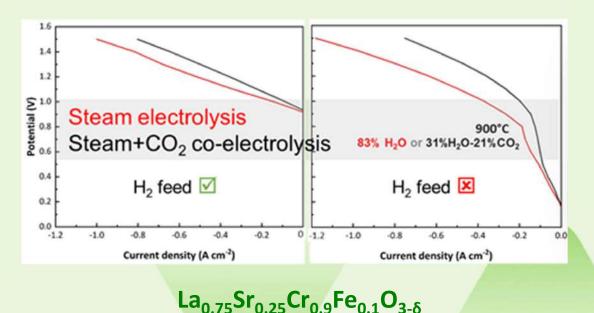

- Single step process to produce "white" syngas (CO/H₂)
- Tailoring of the syngas ratio (H₂:CO) by adjusting the operating parameters
- Syngas can be converted to a diverse range of chemical base products by subsequent catalytic reactions

A highly promising CO₂ valorization technology in a 'Power-to-Syngas' or 'Power-to-X' scenario

Syngas production with tunable H_2/CO yield via co-electrolysis of H_2O and CO_2

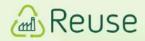
Reuse

H₂O and CO₂ co-electrolysis

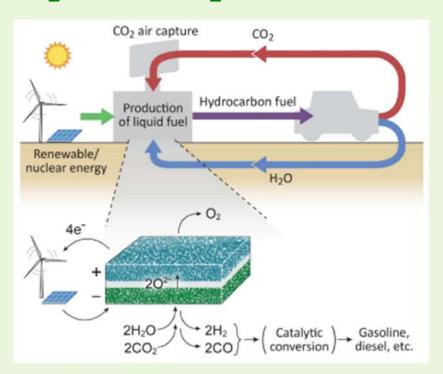

Syngas production with tunable H_2/CO yield via co-electrolysis of H_2O and CO_2

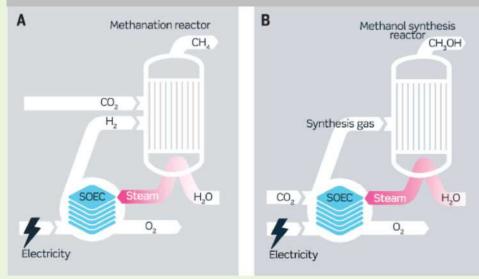
Ni-metal-free cathode electrodes

A class of substituted Lanthanum Chromites $La_{0.75}Sr_{0.25}Cr_{x}M_{1-x}O_{3-\delta}$ [M= Mn, Fe, Co, Ni] for Solid Oxide Water Electrolysis & CO₂+Water co-electrolysis


Mixed conducting materials

- allow the geometric extension of the electrochemical reaction zone, TPB in the entire volume of the electrode
- promote the electrochemical reaction in the SOEC fuel electrode




Reuse

H₂O and CO₂ co-electrolysis

Integration of solid oxide electrolysis systems with a synthesis process

A. Hauch et al., Science, **2020**, 370, eaba6118

Advantages of electrochemical CO₂ conversion

- 1. The process is completed through reactants gaining or losing electrons at an electrode (usually electrocatalyst), and **neither oxidizing agent nor reducing agent is needed**
- 2. Without adding an oxidizing or a reducing agent into the solution, the consumption of substances can be reduced, and the **side reactions can be greatly reduced**
- **3.** Products can be controlled accurately via controlling the metal electrodes, current, voltage, and electrolytes
- 4. The separation process can be simplified, and **high-purity products** can be obtained
- 5. The reaction that may not occur under usual conditions can be carried out through electrochemical reaction
- 6. The reactions usually run under **ordinary temperature and pressure**, and the **energy consumption can decrease significantly**
- 7. The electricity used to drive the process can be provided by the **excess energy from intermittent renewable sources** instead of large-scale energy storage
- 8. The electrochemical reaction systems are compact, modular, on-demand and easy for scale-up applications


Challenges of electrochemical CO₂ conversion

- The **slow kinetics** of CO₂ electro-reduction, even when electrocatalysts and high electrode reduction potential are applied
- The **products selectivity** is one of the significant points to be investigated when evaluating the properties of catalysts
- The high energy consumption. The biggest challenge in CO₂ electro-reduction is low performance of the electrocatalysts (i.e., low catalytic activity and insufficient stability)
- The low energy efficiency of the process, due to the parasitic or decomposition reaction of the solvent at high reduction potential

Proposed optimizations & research directions

A. Optimization of activity, selectivity, and stability of catalysts

- high production faradaic efficiency and low hydrogen evolution reaction
- high active surface area which may provide more active sites
- synthesize materials with different advantages and the nanoscale catalysts with special 3D structures could be developed and investigated
- better understanding of the reaction process

B. Scaling up the reactors and reaction systems

- continuous system on a large scale should be designed and optimized
- use of gas diffusion electrodes (GDEs) to improve the mass transfer process
- use of waste waters or other carbon-capture solutions as the electrolyte
- development of high temperature (solid state) electrolysers

Reuse Thank you!

Reuseproject.eu

in REUSE - Horizon Europe Project info@reuseproject.eu

Funded by the European Union

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101172954. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union.

novonesis

etaflorence* renewable energies

Economic feasibility

- What combination of **optimized figures of merit** will be sufficient for economic feasibility?
- How fast do the component materials (particularly catalysts) degrade over long periods of time?
- What are the sources of CO₂ and how will potential contaminants such as sulfurcontaining compounds impact electrolyzer design, as well as cell performance and catalyst durability?
 - The cost to produce a given amount of CO is substantial and dependent on the current density at which the electrolyzer is being operated, leveling off at high current densities
 - The current SoA performance (100 mA/cm²) is still far from a performance level where the cost to produce CO starts to level off

